Vertical stratification of forest canopy for segmentation of under-story trees within small-footprint airborne LiDAR point clouds

نویسندگان

  • Hamid Hamraz
  • Marco A. Contreras
  • Jun Zhang
چکیده

Airborne LiDAR point cloud of a forest contains three dimensional data, from which vertical stand structure (including information about under-story trees) can be derived. This paper presents a segmentation approach for multi-story stands that strips the point cloud to its canopy layers, identifies individual tree segments within each layer using a DSM-based tree identification method as a building block, and combines the segments of immediate layers in order to fix potential over-segmentation of tree crowns across the layers. We introduce local layering that analyzes the vertical distributions of LiDAR points within their local neighborhoods in order to locally determine the height thresholds for layering the canopy. Unlike the previous work that stripped stiff layers within constrained areas, the local layering method strips flexible (in thickness and elevation) and narrower canopy layers within unconstrained areas. Statistical analyses showed that layering in general strongly improves identifying (specifically understory) trees for the cost of moderately increasing over-segmentation rate of the identified trees. Combining tree segments across the immediate layers did not seem to improve tree identification accuracy remarkably, suggesting that layers separated canopy layers rather precisely.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remote sensing of forests using discrete return airborne LiDAR

Airborne discrete return light detection and ranging (LiDAR) point clouds covering forested areas can be processed to segment individual trees and retrieve their morphological attributes. Segmenting individual trees in natural deciduous forests however remained a challenge because of the complex and multi-layered canopy. In this chapter, we present (i) a robust segmentation method that avoids a...

متن کامل

A robust approach for tree segmentation in deciduous forests using small-footprint airborne LiDAR data

This paper presents a non-parametric approach for segmenting trees from airborne LiDAR data in deciduous forests. Based on the LiDAR point cloud, the approach collects crown information such as steepness and height on-the-fly to delineate crown boundaries, and most importantly, does not require a priori assumptions of crown shape and size. The approach segments trees iteratively starting from t...

متن کامل

Correlating the Horizontal and Vertical Distribution

Light detection and ranging (LiDAR) has been widely used to estimate forest biomass. In this study, we aim to further explore this capability by correlating horizontal and vertical distribution of LiDAR data with components of biomass in a Picea crassifolia forest. Airborne small footprint full-waveform data were decomposed to acquire higher density point clouds. We calculated LiDAR metrics at ...

متن کامل

Characterizing the Height Structure and Composition of a Boreal Forest Using an Individual Tree Crown Approach Applied to Photogrammetric Point Clouds

Photogrammetric point clouds (PPC) obtained by stereomatching of aerial photographs now have a resolution sufficient to discern individual trees. We have produced such PPCs of a boreal forest and delineated individual tree crowns using a segmentation algorithm applied to the canopy height model derived from the PPC and a lidar terrain model. The crowns were characterized in terms of height and ...

متن کامل

Efficiency of Individual Tree Detection Approaches Based on Light-Weight and Low-Cost UAS Imagery in Australian Savannas

The reliability of airborne light detection and ranging (LiDAR) for delineating individual trees and estimating aboveground biomass (AGB) has been proven in a diverse range of ecosystems, but can be difficult and costly to commission. Point clouds derived from structure from motion (SfM) matching techniques obtained from unmanned aerial systems (UAS) could be a feasible low-cost alternative to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016